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ABSTRACT

Structural design data are presented for various applied load and thermal
gradient conditions for flat rectangular sandwich panels and sandwich cylinders.
The flat panel solutions pertain to instability under nonuniform stress, and also to
the stresses and displacements resulting from normal pressures and temperature
gradients across the panel thickness in the presence of uniform midplane com-

pression.

Sandwich cylinder design data are given for buckling under nonuniform circum-
ferential and axial stress, respectively, and for stresses due to radial or axial
temperature gradients. The range of stiffness parameters extend, at one limit, to

the isotropic forms of construction,

PUBLICATION REVIEW
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CHAPTERI
INTRODUCTION

The development of thermal stress determination techniques for supersonic
transport aircraft structures has consisted of a threefold effort. First, a survey of
the literature pertinent to thermal stress analysis was performed, resulting in pub-
lication of an annotated bibliography of the subject for the period 1955-1962 (Reference
1); a bibliography covering thermal stress analysis literature prior to 1955 had heen
published elsewhere. The second portion of this study effort has been concerned with
the development of graphical design data for various applied load and thermal gradient
conditions for fiat rectangular sandwich panels and sandwich cylinders. This work is
presented in the subject report. Finally, computer programs for the more complex
problems encountered in beam, plate, and cylindrical constructions were coded with
the purpose of making them available to eligible recipients in the airframe industry.

A description of these programs is given in Reference 2.

Sandwich panels and cylinders provide attractive constructional forms for
large high-performance vehicles and will undoubtedly be given consideration during
the developmental phase of the SST airframe. They are extremely efficient from a
weight standpoint and can be fabricated using materials suitable for an elevated
temperature environment exceeding 1000°F, Sufficient data have been accumulated to
permit their design for conventional loadings and uniform temperature conditions
(c.f., Reference 3) but design data is lacking for nonuniform temperature conditions.
It is the intent of this report to provide such data. In addition, it is to be noted that
the design curves to be presented extend, in one limit, to the conventional isotropic
thin plate and cylinder constructions.

The design curves are presented in the chapters of this report with a dis-
cussion of their basis, use, and limitations and with illustrative examples, but without
a detailed description of the related formulations and solution techniques. The latter
are given in a series of Appendixes.

Solutions to flat sandwich panel problems are found in Chapters II and III. One
of the most important problems in flat plate analysis is the prediction of elastic
instability in the presence of nonuniform stress produced by temperature gradients.
Hoff(4), Klosner and Forray (®), and van derNeut (6), among others, have presented
procedures and isolated results for this problem as it pertains to thin isotropic plates;
there are no known solutions for sandwich construction. In Chapter II of this report,
curves are presented which allow the prediction of the elastic instability conditions
for long honeycomb sandwich panels with equal thickness isotropic skins under non-
uniform longitudinal stress, for both fixed wnd simply supported longitudinal edges.

Manuscript released by authors in July, 1963 for publication as an ASD
Technical Documentary Report,
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Chapter III is coneerned with the stresses and displacements at the eenter of
simply-supported rectangular sandwich panels subjected to temperature gradients
through the panel thiekness and to pressure loadings. The presence of fixed uniaxial
midplane forees is also taken into aeeount. The graphs eover a wide range of aspect
ratios, stiffnesses, and midplane loadings. A limited number of results for eonditions
of fixed support along two edges is also presented. Teehniques for solving this type
of problem have been published by Bijlaard (7) and Ebeioglu (8). Referenee 7 eon-
siders only the problem of temperature gradients and in neither Referenee 7 nor in
Referenee 8 are design eurves presented. The formulation of the governing dif-
ferential equations for this problem, as deseribed in Appendix B, has not been
formally presented elsewhere.

Chapters IV through VII deal with various problems in the analysis of heated
sandwieh cylinders. Curves for the prediction of the elastie instability of sandwieh
cylinders subjeeted to cireumferentially varying axial stress are found in Chapter
IV. Conditions which produee this type of stress distribution inelude both nonuniform
eireumferential temperature gradients and also eombinations of bending and axial
eompression. Graphical means of determining the stresses due to temperature for
this problem have not been eonsidered since the applicable procedures involve the
use of either thermoelastie beam theory or the diserete element teehniques of
matrix struetural analysis. In neither ease are graphieal solutions feasible.

Published references have not as yet considered the ahove-cited instability
problem. Bijlaard and Gallagher (9) and Abir and Nardo (10" studied the ease of
the isotropie eylinder under circumferentially varying axial stress. Both references
coneluded that the small defleetion theory maximum stress amplitude for elastie
instability under varying stress is effeetively equal to that for uniform compression.
This eonelusion is found to be essentially correet in the present ease of sandwich
cylinders. Comparisons are made with the results of past studies of the stability
of sandwieh eylinders under uniform compression (References 11-13).

Chapters V and VI treat the stress and instahility analysis of heated cylinders
supported by unheated rigid bulkheads. Fixed and simple support conditions are in-
eluded. Graphical methods for determining the maximum stresses under such
eonditions appear in Chapter V. This class of problem, for isotropic cvlinders has
been previously dealt with by Hoff*" "/, Przemienieeki d , and Johns (16) pased on
the results of Chapter V, a series of elastic instability analyses were performed and
from these latter results a set of granhical representations of the data were drawn.
These appear in Chapter VI. Results for the limiting case of the isotropic cylinder
are compared with solutions given by Hoff (14), Johns (17 and Anderson (18,

The final design data given in this report pertain to the stresses in a sandwich
cylinder due to radial temperature gradients. Means for computing the stresses due
to either internal or external pressure are also presented. A similar problem, but
with different core properties, was treated by Yao (19, yao proposes a numerical
approach to analysis, based on a method of suceessive approximations. The radial
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temperature gradient problem is limited to stress solutions since considerations of
general instability are involved.

As noted earlier, all theoretical questions associated with the computation of
the data employed in construction of the graphical representations are examined in
detail in a series of Appendixes (Appendixes A through E).
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CHAPTER II
BUCKLING OF SANDWICH PANELS UNDER NONUNIFORM STRESS

This chapter presents graphical representations with which the elastic
instability conditions for honeycomb sandwich panels with equal thickness isotropic
skins under nonuniform longitudinal stress can be predicted. The panels are
assumed to be "long" (i.c., aspect ratio effects and the significance of the trans-
verse support conditions are excluded) and clamped or simply supported along
their longitudinal edges. The conditions of analysis are illustrated in the insert

in Figure II-1,

A detailed treatment of the formulations and procedures employed in the
derivation of the presented curves is given in Appendix A, The governing
differential equation is that which was derived by Reissner in Reference 20; the
method employed for its solution was the finite difference approximation technique.
A special purpose computational program was coded and utilized in the development
of the required data.

It is shown, in Appendix A, that the critical stress is a function of two para-
meters, a stiffness parameter (D )) and a parameter defining the stress distribution.
The stiffness parameter is given as

Dp = l)2 _’i
Dy

(II-1)

where b is the panel width and D and D_ are the core shear stiffness and the panel
bending stiffness, respectively. 9 Tpe aﬁalyst has at his disposal the choice of a,
number of formulas for D and Dg, dependent upon the details of sandwich panel
construction; these choices are developed and discussed in Reference 3, Section 3.1,
The simplest and most appropriate formulas for these parameters are

D, (h+ 1 G (I1-2)
£t (1) T

s 2(1-p2)

where h is the core depth, G _is the core modulus of rigidity, t is the thickness of
one of the panel faces, and Ecand//_ are the modulus of elasticity and Poisson's
ratio of the face material, respectively. These designations of geometry, stiffness,
material properties, etc. are applicable to all chapters of this report.

In the strictest sense, the stiffness paratmeter Dp can range from nearly
zero to infinity, At infinity the case of the isotropic plate with infinite shear stiff-
ness prevails, This conditim is nearly achieved at much lower values and it is

)
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satisfaetory to eonsider the maximum Dp to equal 104. At the lower range of Dp it
is found that an entirely different mode of instability, wrinkling, is eneountered.
This mode is eharaeterized by a zero wavelength buekling condition due to an initial
assumption that the individual bending stiffnesses of the faces eould be neglected. 1t
is not the intention of the present analysis to deal with wrinkling. The curves have
eonsequently been terminated at Ny - 1, whieh is a limit imposed by wrinkling
(h+t)Ge
assoeiated with shear instability failure of the eorc. Thus, evaluations of the
critical stress were performed for a range of D values from 104 down to values
where this shear instability limit appeared.

Only the simplest forms of stress distribution are of general interest and
therefore suitable for inclusion in design eharts. The results presented herein were
developed for linear and trigonometric-shaped stress distributions. Linear or nearly
linear distributions exist on panels in wings sustaining overall nonuniform chordwise
temperature gradients and also when the bending stress distribution on a wing cross-
seetion departs from the uniformity predicted by elementary theory (as is generally
the case). Trigonometric-shaped stress distributions are good approximations to
conditions where the panel longitudinal edge members (e.g.. the spar caps) provide
signifieant heat sinks, thereby resulting in extreme, loeal, transverse variations of
the longitudinal thermal stress. Similar eomments as to applicability could be made
for both types of stress distribution for fusclage skin panels.

A linear variation of stress which is equivalent to a uniformly distributed load
superimposed upon a bending moment is conveniently deseribed by the ratio (S) of the
stress levels at cither side of the panel. Using the convention that the denominator
is always the larger positive (compressive) value, any purely eompressive load is
covered by the range 1= S Z0. This range has been extended into the mixed
compressive-tensile region to the value S = -1.0, i.e. pure bending.

This range of S from +1.0 to -1.0 has been covered in intervals of 0.25. The
selected trigonometric cuses are simply sin y, sin 2y, eos y, cos 2y.

Figures II-1 to II-4 present the results in graphieal form. Figures II-1 and
[I-2 are [or the simply supported case while Figures I1-3 and 11-4 relate to fixed
support of the longitudinal edges. It was intended to depict in Figure 11-1 the results
from Reference 3 for uniform compression (S = 1.0), but due to the excellent level of
agreement it is not possible to differentiate between those results and the present
solutions for S = 1.0, The eurves are terminated at the lower end by the
wrinkling boundary diseussed previously.

Figure II-5 depicts the variation of buckling stress for the isotropic plate sub-
ject to linear stress distributions for each boundary condition. These curves have
becn obtained by considering large values of Dp Here, the form of the abeissa has
been altered slightly to eliminate the shear stilfness of the core (D ). The new
abeissa is thus taken as i O cr b2 where tj = 2t is the thickness br the isotropic

plate. D,

6
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Illustrative Examples

Example (1) Sandwich Plate with simply supported edges

Width of panel = 40 in.
Core Thickness = 0.50 in,
Modulus of faces 107 1h/in2
FFace Thickness = 0.036 in.

2 x 104 1b/in.?

Shear Modulus of Core

The panel is subjected Lo a triangular compressive load (S = 0). Utilizing the
above data and formulas 3.12E and 3.13B from Reference 3, one obtains Dg = 5.68 x

[y

2
10% and Dq = 1.0 x 104, From this paper, D = qu = 282, From figure II-1, for

p
Dg

S =0atD_ = 282, the buekling load parameter—é—t— o _is found to be 0.257. Henee,
p q ¢©r
0.257 D

o = 9 - 35700 Ib/in

er 2t

o

Total applied load = 2t oc — = 51400 |b.

Example (2) Isotropic Plute with simply supported edges

Width ol pancl =40 in.
Modulus of panel 107 1b/in?
Thickness 0.388 in.
Thus D 5.343 x 107
This p;mclzis also subjected to a triangular eompression (S = 0). From Figure
Ljb?
-5al S =0, — O =77.05
Dg cr
77.05 D 2
Thus o - s = 6625 1b/in.
er >
ti b=

Here again total applied load = UCI.—,E- 51400 1b., Thus. the two panels
carry the same loading but, us can be scen, the sundwich panel has a considerable

advantage over the isotropic plate on a weight basis.

The few published solutions for buckling of long panels under nonuniform load-
ing arc entirely restricted to the casce ol isotropic plates. Timoshenko (21) has
considered an isotropic plate with a linearly varying stress. The parameter used
by Timoshenko is the factor k in the expression.,
wiDg

=k
cr

2
bt

=1
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Using this parameter the following comparison is obtained

S k
Timoshenko Present Report
+1.0 4.00 3.98
0 7.81 7.79
-0.5 13.40 13.35
-1.0 23.90 23.63

Hoff ) has considered a trigonometric distribution of load, corresponding to the
cos 2y case of the present paper. The value obtained by Hoff, k = 7.67, shows good

agreement with the present work where k = 7.68.
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Figure II-1. Buckling Load of a Long Sandwich Panel Subjected to Linearly
Varying Edge Stress (Long Edges Simply Supported)
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Figure II-2. Buckling Load of a Long Sandwich Pancl Subiccted to
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ASD-TDR-63-783

10,000 X

AN AN EANAN
AN N\
SN N
5000 ANV NNNN
\i\
NN N
NN NANAN
N \\
N
1000 NN ANEAANEANEAN AN
N \\L\ N\
NN NEDN q
500 : \\s <
S
CIQ. \ A -1.0
ns |
-0.75
7 N
SV \u\\\\\\\\_ﬂ‘ - l'_ -0.50
— - \‘\ -0.25
100 H— ‘) ¢ S
H S S o
— L ,\_\%j 0.25
YN VUV U UV T
50 |-— = S0 . VY 050
‘ - T 0.75
-
|
— === i 1.0
I
i 1
10 0.01 0.05 0.10 0.50 1.0
11

Figure II-3. Buckling Load of a Long Sandwich Panel Subjected to Linearly
Varying Edge Stress (Long Edges Fully Fixed)
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Figure II-4. Buckling Load of a Long Sandwich Panel Subjected to Trigonometric
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12




ASD-TDR-63-783

400

300

- Edges

\ Built-In
200

N
NC TN |

100 \

Buckling Stress Parameter o .. t;b2/Dg

N
Ny
|

Edges

Simply

Supported —
]

0
-1.0 -0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.0
Linear Variation Ratio S

Figure II-5. Buckling Stress for Isotropic Plates Subject to Linearly
Varying Compressive Loading

13



L3

ASD-TDR-63-783

CHAPTER III

PROCEDURE FOR DETERMINING THE STRESSES AND
DISPLACEMENTS FOR A RECTANGULAR SANDWICH PANEL

Design curves are presented in this chapter which permit the determination of
the central deflection and maximum bending moments in a rectangular sandwich
plate subjected to a uniform normal pressure and uniform temperature gradient
through its thickness combined with an unaxial in-plane compression Ny. All edges
of the panel are simply supported. In addition a limited number of curves is
presented for the case of two opposing edges fully built-in and two edges simply
supported. The sandwich panel consists of two isotropic faces of equal thickness
t(Fig, III-1) and a core of thickness h. The core has the usual properties of zero
in-plane stiffness and uniform transverse shear stiffnesses with a shear modulus

Ge.

The type of loading combination considered here, consisting of mechanical
and thermal loading, can occur, for example, in a wing panel of a high speed air-
craft subjected to kinetic heating effects and cooled by the presence of fuel stored
in integral tanks. The values of the mechanical and thermal loadings are assumed
to have been determined from a general structural analysis.

The governing small deflection theory differential equations for a sundwich
panel subjected to thermal as well as mechanical loading have been presented by
Bijlaard(") and Ebcioglu(8) but in neither paper design curves are presented. In
Reference 22 a new formulation of the differential equations is developed and the
equations are solved for a number of boundary conditions. An outline of the method
of solution is given in Appendix B. The solution which involves the use of infinite
Fourier series has been programmed in FORTRAN for evaluation on an IBM 7090
computer.

As in Chapter II the stiffness of the sandwich panel is described by

single parameter D sz

T q
Dy =3
-

TT2D
s

In addition, however, since panels of finite proportions are now being considered,
the aspect ratio

=

must also be introduced. Although both Dp' and may both vary over very large
ranges theoretically practical considerations provide limitations, so that only
values of Dp' between 1 and 100 and A between 0.4 and 2.5 have been considered.

R o
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Since there are three independent parameters, stiffness, aspect ratio and mid-plane
loading, it is not possible to present all variations simultaneously on one graph.
Thus Figures III-1 to III-4 present the variation of the maximum deflection per

unit temperature gradient for four values of the mid-plane loading with all edges
simply supported. Similarly Figures III-5 to III-8 show curves of the maximum
deflection per unit normal pressure for the same four mid-plane loadings with all
edges simply supported. Figures III-9 to III-16 depict the central bending moments
per unit temperature difference or unit pressure for the four mid-plane loadings
with all edges simply supported.

In Figures III-17 and III-18 the central deflections per unit temperature
gradient and per unit normal pressure are plotted against the mid-plane loading for
a panel having a stiffness Dp' = 100 (i.e. an equivalent isotropic plate). For values
of the aspect ratio up to unity the buckled shape of such a plate consists of a single
half-wave in each direction and thus buckling is represented by the maximum de-
flection increasing smoothly to infinity. On the other hand, for a/b = 1.5 the buckled
shape has two or more half waves in the longitudinal direction and therefore does
not conform to the deflection form generated by the thermal or normal loading. The
curves for a/b=1.5, 2.0 and 2.5 have been terminated at the true values of the
critical stress as given by Timoshenko for an isotropic plate., At these values the
buckling will be characterized by a sudden change in deflected shape of the panel.

Similar curves may be generated by suitable cross plotting for other values of Dp'.

Figures III-19 to III-22 show central deflections and bending moments similar
to Figures III-1, III-5, III-9 and III-13, but with two opposing edges fully built-in
and two edges simply supported. The bending moments at the center of the built-in
edge are given in Figure II[-23.

Illustrative Examples

(1) A rectangular sandwich panel 20 in, by 30 in, is simply supported along
each of its edges and is subjected to a uniform normal pressure of 1 psi. The
dimensions of the sandwich are as follows:

Core thickness = 0.50 in. E =10.5x 106 psi
Face thickness = 0.020 in. G, = 6.65 x 10% psi

Using the above data D = 3.15 x 104 and D ' = 44,5, By interpolation on Figure III-

5 for D' = 44.5 and N=1.5

4
W ax v DS
_max ° _0.77

pb4

Hence maximum deflection w = 0,0401 in.
max

16
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In Reference 23 a sandwich having the above dimensions has been sub-
jected to normal pressure. The maximum deflection measured on this specimen
was 0.0384 in., compared with a predicted maximum deflection, using the theory
of Reference 23, of 0.0446 in.

(2) A rectangular sandwich panel 24 in. by 36 in, is simply supported along
each edge and is subjected to a uniaxial compression of 1500 lb/in. The panel also
carries a normal pressure of 10 psi acting downwards. The lower face is heated so
that there is a constant temperature difference of 200°F between the lower and
upper faces. It is required to find the maximum deflection at the center of the panel
and also the maximum bending moments.

Core thickness = 0.97 in. E = 10.5x108 psi
Face thickness = 0.03 in. G = 3x104psi
@ = 12x10°5/°F

Using the above dimensions Dg = 1.73 X 105,1)q =3x 104, A=15

N
X

! = = = -
Thus Dp 10.0 and 'qx Dq 0.05
From Figure III-2 for these values of Dp' and

wmax m 2h
] =1.135

b2+ )T

W =0.2067 in, (downwards)
max
T
From Figure III-6

4

\\% T°D
max
B S
pb?
wmaxp = 0.1910 (downwards)

Total maximum deflection = 0.2067 + 0.1910 = 0.3977 in,

In a similar fashion using Figures III-10 and III-14 the maximum bending
moments are found to be
My - Myp + My = 294.14 - 250.45 = 43.69 1b. in.

My Myp+ M ¢ = 935,75 - 16.19 = 519.56 1b. in.

y

17
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These bending moments yield direct stresses in the facings o = +1262 psi and
= 415015 psi. In addition the compressive load Nx causes a compressive stress

o, = 25000 psi
i.e. o total = 26262 psi.

18
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CHAPTER IV

SANDWICH CYLINDER INSTABILITY UNDER CIRCUMFERENTIALLY
VARYING AXTAL STRESS

This chapter is concerned with the prediction of the elastic instability of an
axially loaded sandwich cylinder of mean radius r and core thickness h, with
isotropic faces of equal thickness t (Figure IV-1), The faces possess only inplane
stiffness and have a modulus of elasticity E, while the core possesses only a
transverse shear stiffness with a modulus of rigidity G,. The axial load per unit
circumferential length, Ny, varies in the circumferential (y) direction and at any

point the stress in each of the two faces is assumed equal at a value o = Nx
2t

Conditions of circumferentially varying stress, as shown here, may result
from the combination of an applied axial load and bending moment, or as a result
of temperatures which vary around the circumference at the cylinder. Trans-
formation of the applied loads or temperature profile into the required stress
distribution is assumed to have been accomplished by the user of the present data
by means of the appropriate stress analysis technique.

The problem of the elastic instability of an isotropic thin-walled cylinder
has been solved in References 9 and 10 on the basis of small deflection theory.
Both references concluded that instability is reached when the maximum axial
stress has the value

Ter ® O'GE—; (IV-1)
regardless of the nature of the circumferential variation of 0y, (The compression
zone Within which the maximum value g, occurs must at least extend over the
wavelength of a circumferential buckle, however). tis the wall thickness of the
isotropic shell. The result of Equation IV-1 is,of course, the small deflection
theory solution for uniform compression. In view of these results it would appear
reasonable to expect that for the case of a sandwich cylinder the same conclusions
would prevail, i.e., the instability stress is given by the solution for uniform axial

compression, regardless of how nonuniformly the stress might vary.

Small deflection theory solutions for the instability at sandwich cylinders
under uniform axial compression, based on infinite series techniques, have been
presented in references 11, 12 and 13. These results are useful for comparison
purposes but to develop solutions for nonuniform stress it has been found more
convenient to extend the finite difference technique used in Reference 9 to the
present case. Details of this extension are given in Appendix C.
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Based on the theory described in Appendix C a computer program for the
prediction of critical stress under the subject conditions was coded and employed
in the development of parametric results. For sandwich cylinders, two stiffness
parameters must be considered:

D r2
=q (IV-2)

D
s

DC

E 4
and(é-s-I). The chosen values of D, range from 66.7 to 2500, while g—zr ranges from

0 to approximately 0.95. The upper limits of both parameters are governed by a
wrinkling failure characterized by a shear instability of the core. As in Chapter II,
this instability is governed by the condition

2 et —_
()G, av-3)
The specific load conditions studied are those which produce a linear variation

of stress, described by the ratio (S) of the crown stress ( Txe) to the stress at the
bottom of the cylinder ( chb), i.e.,

o
§=_ % (1V-4)
Uxb
Results were obtained for S = 1.0, 0.5, 0, -0.5 and -1.0 for various combinations, of
the two governing parameters.

Selected results are presented in Table IV-1. As anticipated the critical
stresses for nonuniform stress states are effectively equal to the critical stress
for uniform axial compression (S = 1.0), The negligible differences between the
results for a given stiffness condition may be the result of the differences in stress
distribution, butitisalso possible that the discrepancies are due entirely tonumerical
error. This question cannot be resolved by use of the method adopted for solution of

the problem.

Results are plotted in Figures IV-1 through IV-3. Figure IV-1 is a carpet
plot wherein both stiffness parameters play a role in the definition of the critical
stress. If a conventional plotting procedure and slightly altered scales are adoped,
as in Figure IV-2, the parameter D, loses its significance and all results can be
approximated by a single line, This manner of representation was also adopted in
References 11, 12, and 13. The curve presented in Figure IV-2, based on an
Equation from Reference 13, is given by

Ethet) [ N

(IV-5)
cr
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TABLE IV-1

BUCKLING COEFFICIENTS - SANDWICH CYLINDER
UNDER NONUNIFORM AXIAL COMPRESSION

2t o
Stiffness Critical Stress Parameter =—% (computed)
Parameters q
Dc Et/Gcr =-1.0 1S=-0.5 S=0 S=0.5 S=1,0%
1000 13.49 0.2672 0.2669 0.2665 0.2660 0.2630
200 30.17 0.5536 | 0.5511 0.5476 0.5433 0.5345
66.7 45.24 0.7699 | 0.7630 0.7555 0.7450 0.7243

* Uniform axial compression
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The present results, as shown by individual points on Figure IV-2 are in very good
agreement with the above curve,

For the isotropie cylinder, results obtained from small defleetion theory
analyses are grossly in error except when a sufficiently high internal pressurization
is applied, the attainable critical stress being extremely sensitive to initial
imperfections {e.g., out of roundness, etc). It is therefore to be expected that sand-
wich eylinder critieal stresses will be in closer agreement with small deflection
theory predictions since the initial imperfeetion effeets, whieh are a function of the
radial imperfection magnitude-to-total wall thickness ratio, will be very small in
carefully fabrieated sandwich cylinder.

Experimental results presented by Cunningham and Jaeobson (Refercncc 24)
lend eredence to the above hypothesis. On the other hand thc test data of Norris and
Kuenzi (Reference 25) support the view that large-deflection formulations must be
used for the development of design data. A design curve from Reference 26, based
on large deflection theory, is reproduced in Figure IV-2. Note the large differeneces
between the predictions based on large and small deflcetion theory. Unquestionably,
a rational basis for the design of sandwich eylinders requires a corrclation and
eritical evaluation of existing test data, with the pcrformanee of additional tests in
regions of the governing parameter( gtr ) which have not yct becn examined. This

work should be implemented by a thcoretieal study whieh treats instability under
nonuniform stress on the basis of large deflection thcory. A study of this type is
beyond the scope of the present effort.

As a final representation, the variation of the wavelength of the buekle in the
axial direction is plotted parametrically in Figure IV-3. As in the case of the
eigen values, the eomputed wavelengths were found to be essentially independent of
the shapc of the stress distribution. Thc wavclength to radius ratios are relatively
small; thus, the present results should apply to short as well as to long eylinders.
It should be noted that these eomputed wavelengths are in elose agrecement with
results prescnted clsewhere (Refercnee 12).

Illustrative examples
(1) '"Rigid eore"

Determine the maximum stress for buekling ( crel,) for an axially loaded
sandwieh eylinder possessing the following properties:

Radius (r) : 18 in.
Core Depth (h) : 0.125 in,
Faec Thiekness (t): 0.010 in.

Moduli E = 10.5 x 105 psi
G, = 40,000 psi
p=1/3
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2
Thus, D¢ = 2qf” = 2(1-12) G r? - 1660
Ds Et (h+t)

SE Y =0.146
r

From Figure IV-1: k= 0.96

6
Hence o -KkE (h+t) _ 0.96x10.5x10" x 0,135 _ 75,500 psi
cr r 18

If the material in question is 7075-T6 aluminum, as was the case for
uniformly compressed cylinders of the same proportions tested by Eakin (Reference
27 and discussed by Cunningham and Jacobson, this stress is well into the inelastic
range. By using the dotted curve of Figure IV-2 and the appropriate plasticity
reduction factor, Cunningham and Jacobson found a small-deflection theory critical
stress of 57,000 psi. The test specimen failed at 61,000 psi.

(2) "Soft Core"

Assume all of the above properties and proportions remain the same
except that the core now has a shear modulus G, = 1450 psi and h = 0.1420 in.
The parameter Et/Gcr will then be equal to the value prevailing for tests described
in Reference 12, Thus,

Et  10.5 x 10% x 0.0100

Ger 1450 x 18 = 4.02

From Figure IV-2, it is seen that failure is governed by wrinkling associated with
shear instability of the core. Hence

(h+t)Ge
cr =7 =10,300 psi

This compares with a stress, computed from experimental data,of 11,300 psi.
(Specimen 1424A, Reference 12).
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CHAPTER V

THERMAL STRESSES AND BENDING MOMENTS IN A HEATED SANDWICH
CYLINDER SUPPORTED BY RIGID BULKHEADS

This ehapter presents data for the determination of the thermal stresses and
displacements in a sandwich cylinder of length 2e supported at eaeh end and sub-
jected to a temperature ehange ( A T)from the stress-free state. The. cross-sec-
tional properties and the material property characteristies are identical to those of
the sandwieh eylinder of the preeeding chapter (see Figure V-1). Both fixed and
simple support conditions are treated. The fixed support condition applies to a
eylinder eontinuous over many supports, where, due to symmetry, each bay is
effeetively built-in at the bulkheads.

A detailed development of the pertinent formulations is presented in Appendix
D. There, it is shown that the problem is similar to that of a beam on an elastie
foundation, The radial displacements (w) for the simple support condition are found
to be

T a2 AT [(n122-2) cosh myHy (m 2_2) eosh moHy m 2} m12):,
_m 2
(m2 m, ) eosh mlHl eosh m2H1
2 2 (V-1)
where m_~ = |1 +4/1-~= (V-2)
1 Hd
2 _ - Nh-Z (V-3)
m2 = [1 1 T }
d
g E
H, _ EtDs _ E (V-4)
»2p 2
Dq Dch
X Et
== =2 V-
Hx . D (V-5)
q
e Et
y Y Sl V-
IIl r D (V-6)
q

The hoop stress ( a¢p ) midway between the supports (at x = 0), which is a ring
compression or tension (i.e., it 1as an equal value in both the inner and outer faees)

is given by
2 2
5 mq<-2 my4-2
_Ea AT_[ 1 _ M ] (V-1)
c

¢ 2 2 ; _
e (m2 ml) osh 1112111 eosh ml”l

while the longitudinal bending moment (Mxe) at x = 0 is ealeulable from
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M, H

D raAT (m*2) my?2 | 1 1 -

Xc d ' q

2) cosh m2H cosh m_H

2_
(m,"-m 1 19

1

Formulas for the center deflection, the hoop stress at the center, and for the
longitudinal bending moments at the center and supports of the cylinder are given by
Equations D-9 through D-12 of Appendix D.

The hoop stresses and bending moments for both support conditions were com-
puted for realistic ranges of the pertinent parameters (Hy and Hy) and are plotted in
the form of nondimensionalized design charts in Figures V-1 through V-5. These
figures show the characteristic reversal of stresses associated with the beam on an
elastic foundation type of problem.,

Illustrative Examples
(1) "Isotropic' cylinder

As a check on the accuracy of the plotted data the case of an isotropic
cylinder with simply supported ends, examined by Hoff (Reference 3) will be
treated (there are no alternative solutions published for the sandwich problem).
In Hoff's paper, r = 10", C = 1.57",T =0.0331" and E = 29 x 106 psi. To achieve

a comparison with the present paper an equivalent sandwich must be defined. It

has been suggested that a suitable criterion is that the radii of gyration of the
sandwich and the isotropic plate shall be equal. Also the total cross sectional

areas must be equal.

Thus, if t is the thickness of isotropic sheet, t is the thickness of each sand-
wich face and h' is the effective depth, (i.e. distance between centroid of the faces).

| - ’ 13 th'2
then 2t =t an TZ__E w

t

R .
i.e. t—2 and h'-= 73

Also a core shear stifiness Dq must be defined. However, in the case of an
isotropic plate the shear deformation has negligible influence and a large value
for Gg may be chosen arbitrarily. Using the formula Dq = h'G¢ and with an
arbitrary choice of G, = 1.1 x 106 psi one obtains Dq = 2.1 x 104. The bending
stiffness is computed as

=3
Dg = —b 5 = 96.307
12(1-—/« )
EtDS 3
hence H, = =10 ° and H == R =0.742
2.2 1 r D
r Dq q
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From Figure V-2 at H 4 10—3 and Hl = 0,742 the hoop stress at center

O’¢’ =0.057Ea AT

In Reference 3 the stress at the center of the cylinder is obtained from the
expression

cosh Bcos 3

o, = Ea AT
2
¢ Sinh2B +cos B
2
where =o.643%—) V2 45

The stress, as dervied from the above formula, is then
o% = 0.056 Ea AT

Thus, there is cxcellent agreement between the graphical and analytical rcsults.

(2) Sandwich Cylinder

A long sandwich cylinder of 70 inches mcan radius is ring stiffencd at
intervals of 48 inches. The core thickness is 1.0 inch, the facc thicknesses 0.030
inch. Both the core and the faces are composed of 17-7PH stainless steel, E = 27 x
106 psi, @& = 6.1 x 1076 /°F, G, = 100,000 psi. The cylinder is uniformly hcated
to a temperature 600°F in excess of the ring temperature. Determine the resulting
hoop stresses and longitudinal bending moments.

Assume the ring stiffencrs arc infinitcly rigid and that in any particular
bay the cylinder can be assumed to be fixed-supported at its ends.

2(1- p %) Ger”

=] = 1. = + =
D, e 070 D, = () G, = 103,000
Hd=§—tD - 735x107° H, J;/% = 0.961
cq I q

From Figure V-3 by interpolation for I-ld and Hl the hoop stress is given by
04) =0.060Ea AT = 5930 psi

From Figures V-4 and V-5 the bending moments at thc centcr and cnds arc found to
be

At center M\'c = 0.0152 qu a AT-=4011bin/in.

At ends M, =0.12 qu a AT -=31651b in./in.
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CHAPTER VI

INSTABILITY OF HEATED SANDWICH CYLINDERS SUPPORTED
BY RIGID BULKHEADS

The data presented in this Chapter permit the determination of the temper-
ature change which will produce the elastic instability of sandwich cylinders
supported by rigid bulkheads. The conditions of analysis are similar to those of
the preceding Chapter, where the stresses introduced by the temperature change
were determined. In determining the stresses only simply supported and fully
fixed cylinders were considered. However, in considering the instability of the
cylinders under hoop stress alone, it is necessary to define three conditions of
analysis.

a) Fixed support condition. In this case the cylinder consists of a single
bay fully fixed against rotation by a rigid bulkhead at each end.

b) Simple support condition--single bay. Again a single bay cylinder is
considered but the rigid bulkheads no longer restrain the rotation of the ends.

¢) Simple support condition--many bays. The cylinder is taken to be
continuous over many bays, as in a fuselage. The bulkheads restrain radial dis-
placement but provide no restriction against rotation.

In the case of a long multi-bay cylinder (Case c)) the thermal stress dis-
tribution in each bay corresponds to the fully fixed case. The fixing moment is
produced by symmetry at the supports. Although one possible buckling mode could
he the fully fixed one, as discussed in Section 2 of Appendix E, where each bay is
fully fixed due to symmetry at the bulkheads, buckling could also occur in the

N 7S -~ simply supported mode as shown in the

- ~ = ~ -
- —_

= = ——¢  adjacent sketch. In this latter case

each bay behaves as if it were simply

i supported at the bulkheads and since
__J this mode will involve less bending of

— | — the faces than the fully fixed mode

- ~ - ~ - . (see sketch), the simply supported

mode will predominate.
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Thus, for a multi-bay cylinder of this type the stress distribution must be
determined for the fully fixed case and this stress distribution used in the simply
supported stability analysis to determine the critical temperature  T,,.. This
method has been used to develop curves for the determination of the critical
temperature of a simply supported multi-bay sandwich cylinder. These curves are
presented in Figure VI-2,

Figure VI-1 provides the means for determining the critical temperature for
a simply supported single bay (case b)).

The pertinent parameters are in the same range of values as wcre employed
for the design curves of Chapter V.
tEa AT

Both sets of curves have been terminated at an upper value 5. - 0.5,

corresponding to the shear instability failure of the core noted previously. This
instability was characterized by the relationship

At the restrained ends of the cylinder the hoop stress (Og ) cquals Ea A Tcr'
Thus

2tEd_ATcr
5
q
or
t‘.E(IATe1
D - =0.5
q

The significance of the present data with respect to published isotropie
cylinder solutions is discusscd at length in the first of the two following illus-
trative examplcs.

(1) Isotropic Cylinder
6 . -6 0., . . !
A stcel (E =29 x 10 psi, & =6.1x10 / F) isotropic cylinder of
radius 15 in., wall thiekness 0,022 in., is simply supported at rigid bulkheads at

intcrvals of 5 in. The eritieal temperature is to be determined for cach of two
cases:
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Cylinder consists of a single bay only

(@)

(b) Cylinder is continuous over many bays

As in the illustrative example of Chapter V an equivalent sandwich must be defined.’

Using the relationships derived previously.

/

=0.0110 and h = -;— = 0.0127

t =

where T is the wall thickness of the isotropic cylinder. The shear modulus of the

equivalent core is arbitrarily selected as

6
Gc = 1,576 x 10 psi

12
Thus Dq = th = 2.002 x 104 and Ds - B = 28.27
2(1- u 2)
EtD 2
S -
and Ho=——p =107 and 1-11=‘};tc = 0.665
rD r D
q : q
From Figures VI-1 and VI-2 for Hd = 10_4 and Hl = 0,663
tEC AT
a) - ) =0.121 for a single bay cylinder
q
tEXAT
b) —Dp - 0.049 for a multi-bay cylinder
q
' tE€AT q 1/2 ' . =
Since =(AT ) [55)and h= —, then
D 9] - 2) H cr’ \h 3
q (-M)H,
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2
o (2¢)”  _ 8
For this cylinder T T 15 x0.022 75

In Figure 1 of Reference 18, Anderson presents the critical temperature for an
(2c 2
isotropic cylinder }‘% = 75. The corresponding values of (q ATcr) <_'t£>

as taken from the curve, are 5.24 and 2,08 respectively. The actual critical
temperatures are

0.121 D
[e]
a) T, = TEa = 1245°F
0.049 D
-— = °
b) T = TEQ 504°F

(2) Sandwich Cylinder

A sandwich cylinder of 95 in. mean radius is ring stiffened at intervals
48 in. The core thickness is 1.0 in., the face thicknesses 0.030 in. Both core and

faces are composed of 17-7 PH stainless steel, E = 30 x 106 psi, X =6.1x 10_G

1'n./in.°F, G =170,000 psi. The critical temperatures are again to be determined
for the simp‘iy supported single and multi-bay cases.

)2
Then D = hl Gc =7.21x 104 and D = w g = 5.246 x 105
q 2(L- )
EtDs -2 Etcz. 2
and Hd =5 =10 and H1 = 5 =0.893
r D r D
q q

From Figure VI-1 for Hy = 10-2 and Hj = 0.893 the point lies above the
shear instability boundary. Thus the critical temperature for the single bay
cylinder is given by

tECAT
cr

and AT =
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From Figure VI-2 for the relevant Hy and Hj for a multi-bay cylinder

t E X ATCr
—35 - 0.4
q
o
and ATcr = 5253 °F

It can be seen from the above examples that this type of instability is
unlikely to occur in sandwich cylinders of normal proportions. It is, however, a
possible mode of failure in cylinders of very large radii and low wall thickness.
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Figure VI-1. Critical Temperatures for the Instability of Simply Supported
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o A -3
A ] 7 3x10
0.20 /
/ // 10—3
0.10
// 3x10-4
/' 1074
0
0 0.4 0.8 1.2 1.6 2.0 24 28 3.2

£(E>Vz
r Dq

Figure VI-2, Critical Temperatures for the Instability of Cylinders Simply
Supported Over Many Bays
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CHAPTER VI

SANDWICH CYLINDER STRESSES DUE TO INTERNAL AND EXTERNAL
PRESSURE AND RADIAL TEMPERATURE GRADIENTS

Design curves presented in this section permit the determination of the
stresses in long sandwich cylinders subjected to radial temperature gradients and
to internal and external pressure. As in the preceding chapter, the cylinder consists
of two concentric thin cylinders of identical materials, with radii r, and r, and
thicknesses t, separated by a honeycomb type core of thickness h = ry,-r; (see
Figure VII-1). The cylinder is heated such that each skin has a constant tempera-
ture change from the stress-free state (T, and T;, respectively) with a linear vari-
ation across the core, while the internal and external pressures are p, and p;.

The theoretical basis of the present chapter is detailed in Appendix F, where
the desired stress equations are derived by first considering the separate deforma-
tions of the three components - - the two skins and the core--under the actions of
external and interface loading and by then applying the conditions of interface com-
patibility. The isotropic faces are analyzed using plane stress relationships. The
core is assumed to possess a modulus of elasticity in the radial direction (Ey) and
a coefficient of thermal expansion in the radial direction equal to that of the skins,
Consistent with the common properties of honeycomb construction, the core has
neither stiffness nor a coefficient of thermal expansion in the axial or circumferen-
tial directions. As shown in the illustrative example, however, homogeneous
(rather than honeycomb) cores, of the type often employed in sandwich construction,
can be analyzed with sufficient accuracy by use of the present curves.

It should be noted that the ends of the cylinder are assumed to be free to move
in the axial direction and axial stresses due to end closure of the cylinder are not
included. The latter, which are approximately equal to P_i_i, can be superimposed
on the stresses obtained from the present curves. "End “effect' stresses, if calcu-
lable, can also be superimposed.

Due to the imposed load and temperature conditions,axial and longitudinal
stresses are produced in the faces and radial direct stresses are introduced into the
core. There are no direct axial or circumferential stresses in the core due to the
absence of core stiffness in these directions. Design curves for the axial and cir-
cumferential stresses at the outside surface due to external pressure, internal
pressure, and temperature are presented in Figures VII-1 through VII-6. The rela-
ted formulas for stress are shown in each figure; these formulas show that the
dimensionless stress parameters (e.g. o T /Ea (To-T;)) depend only upon

0
R = ro/rj and Et/Erri. For shells of current interest and importance, appropri-
ate values of R lie between 1.0025 and 1.10 while the ratio Et/Erri takes on values

67




]
[ES———

ASD-TDR-63-783

in the range of 0.01 to 50.0. These ranges were employed in the development of the
subject design curves.

Values for the inner surface and radial stresses are easily obtained from the
corresponding outer surface stresses through simple algebraic operations and are
therefore not plotted. The pertinent relationships are: (Equations VII-1 to VII-6
appear in Figures VII-1 to VII-6).

a. Stresses Due to Radial Temperature Gradient

T T
o =-0 VII-7
g i 0, ( )
T T
g =-RoO (VII-8)
X, X,
1
T < t )(1 + R ) T
o = o = o (VII-9)
r r; 2R 6 o
b. Stresses Due to Internal Pressure
i DTy p;
o kg (VII-10)
g, t 6,
bi bi
= -R _
o X, sz (VII-11)
Pj pj
o =-<L><1+R) on (VII-12)
r rj 2R 6 0
c. Stresses Due to External Pressure
Py Rprx; P
op  <- ot og ° (VII-13)
i t Y
P Y
o ° -- Ro ° (VII-14)
Xl‘ xo
Po <t ><1+R) (ox = VII-15
g r N r. 2R 9 i (VI-15)

Illustrative Example

Given a sandwiceh eylinder with rj = 100.01 in., ro=101.03 in.,t = 0.020 in.,
subjected to a radial temperature gradient T - Ti = 100 °F, and pressurcs p; = 10

psi and P, = 5 psi. The skin material is aluminum alloy with E = 10,5 x 106 psi and
K = 0.3, while the core is aluminum honcycomb with E\. = 1.5 x 105 psi. For
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skin and core a =12 x 10'6/°F. Determine the axial and hoop stresses in the
outer skin and the radial stress in the core.

R = 1.0102 Et/E,r; = 0.014

By interpolation on Figures VII-1 to VII-6 the following stresses are found.

o T o B o plt
g
o4 S = -0.711 . - 0.497
Ea(T,-T) Ea (Ty-T)) Ty
pl po po
o o Y B
X, t 0.t X
-3 0 Y -3
" = -0.844 x 10 — =-0.492 - = +0.829 x 10
Pity Porj P,ri

Thus total hoop stress in outer skin
T I Po

09 = -9000 + 24850 - 12300 = 3550 psi
0

Axial stress in outer skin
T Pj Py
Ux =-8960 - 42 + 20 = -8980 psi

Radial stress in core

T pi pO

O'r = +1.8 - 4.9 + 2,56 = -0.5 psi

Similarly, the inner skin stresses are found to be

0'8 = -21,900 psi and Ux = +9010 psi.
i i

1
Yao( 9
thermal gradient alone, where the core possesses the properties of a homogeneous

material. Otherwise, the problem data are identical to those given above. The
stresses found by Yao are as follows:

has analyzed the case of a sandwich cylinder under a radial

T
T 5, = -0.730 Ea (T,-T;) = -9200 psi
T
g
ei = 0.685 E a (To'Ti) = 8630 psi
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T
= -4 -T.) = i
o r = 1.37Tx107% Ea (Ty-Tj) = 1.7 psi

These values compare closely with the present results of -9000, 9000, and 1.8 psi,
respectively.
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APPENDIX A

BUCKLING OF SANDWICH PANELS UNDER
NONUNIFORM STRESS

The governing differential equation for the stability of a sandwich plate
composed of equal thickness isotropic faces possessing only stiffness in direct
stress and an isotropic core which possesses only shear stiffness (see Figure II-1
in text) can be written in the form (Reference 20)

4 D
D VW+(1—’D—SV2)2tcr 27w (A-1)
q X dx2

where Ds is the panel bending stiffness

D . is the core shear stiffness

qz 02 02
= +
ox dy
4 2 2
and vV = Vv v

To solve Equation (A-1), the displacement is first assumed as
w=Wsin A x A-2)
where W is a function of y only and X is a parameter involving the buckle

wavelength in the longitudinal (x) direction. Using Equation (A-2) in (A-1) and
introducing a nondimensionalization of the stress distribution through use of

o
py= X , one obtains
cr 5
[4 o I Iv] 2to,. 9 Dg A Dg -
AW-2 AW +W —D— Y <1+D -pW-F(pW) =0
s q y q 7
(A-3)

where the primes on W and ( £ yW) indicate derivatives with respect to y. Note

that the introduction of p 7 serves to establish a single parameter (Op) which

characterizes instability in the presence of nonuniformly distributed stresses.
Finite differences are used to reduce this equation to algebraic form. With

9 intervals (see Figure II-1) and second order finite differences one obtains the
following evaluation of Equation (A-3) at an arbitrary point k
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. 2
{-2 [Wk-3 N Wk+3} ¥ {Wk-z * Wieo J (24 T8 M)
dwo+w (78+32/\)+W (12+20A+12(/\>2)
k-1 kel 81

D
A JP W -16p W + pW 4 2.4
- { (30+27/\+27P)

81 k-2 k-2 k-1 k-1 k k
16 p w WP w B
kil k+l — k+2 k+2} =L (A-4)
2t o D b2 0
- ——Cr _ _
where n = Dq , Dp— and A = (XD

The boundary conditions on W are:

For simple support

=
1
1

=

W0=W9=0,W_1=—W1, 9= 2,W10=—W8 and W11=—W7

For fixed support

WO =Wg=0, W_;=W,, W_2 = W2 , W10 =Wg and Wy, = W7
The boundary conditions on p must be based on an extrapolation of the stress dis-
tribution beyond the edges of the plate. (Although there is no loading outside of the
edges of the plate (i.e., in actuality p; = 0 fori < 0 and i > 9) the use of finite
differences requires the introduction of fictitious exterior loadings if the stress
variation in the intervals adjacent to the edges are to be represented properly).

With use of the boundary conditions, Equation (A-4) can be adapted to each of
the eight internal points, obtaining thereby eight simultaneous equations with
coefficients Wy, ---Wg. These equations can be written in' matrix form as follows

[[A] - HA[B]J {w} = 0 (A-5)

The matrices |A| and [ B] are presented in Figures A-1 and A-2, respectively.
Both simply supported and fully fixed edges are included.

The condition for buckling is that the determinant of Equation (A-5) shall
vanish., A more attractive solution procedure is through matrix iteration, however,
since direct evaluation of the determinant would lead to a somewhat complex
polynomial of eighth order in [T . To permit matrix iteration, Equation (A-5) is
réarranged as follows:

1

vl = [4] 7 [5] {w) 4=
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Then, iteration of Equation (A-6) is performed, starting with an initially assumed
vector W} , until convergence on the eigenvector { W ¢ ... and eigenvalue

(nl‘—/\>cr is achieved.

For this type of problem it has been found, under certain conditions, that an

oscillation will occur in the iterative process. The process converges on two dif-

ferent vectors such that the vectors [W » JW are identical and { W} ,
p p+2 p+l

{W} p+a are identical (the subscript p designates the pth iterative cycle). This

case occurs when the matrix being iterated upon has two roots equal in magnitude
but differing in sign. The relevant eigenvalues are then the two square roots of the
product of the two apparent eigenvalues, i.e.,

(e . ()

The above condition occurs in practice when the applied loading is a bending
moment across the width of the panel. It is obvious that the same value of moment
will induce buckling independent of whether the moment acts in either of two oppos-
ing directions.

The analysis proccdurc, as described above, yields a critical stress that
corresponds to one preselected value of X , the buckling wavelength parameter,
As ) is varied the critical stress will vary, reaching a minimum for an as-yet
unknown value of A . To establish this absolute minimum, one can first select a
range of A 's, and calculate for each the corrcsponding critical stress parametcr,

[T. Next, employing thesc results, a polynominal [ versus X\ relationship is
established through usc of a curve-fitting tcchnique. The minimum [T is then
obtained through solution of the cquation resulting from the condition d Il

- =0.

dA
The value of the critical buckling stress parameter is a function of
(1) The panel stiffness (represented by the paramcter Dp).

(2) The buckle wavclength (represcnted by the parameter X ), and

(3) The applicd load distribution (dcscribed by the parameter p y)'

Wavelength considerations are taken into accound by the sceme described above. Thus,
it is only necessary to decide which ranges of the parameters Dp and /ay are of

practical interest. A discussion of this question is given in Chapter II

In ordcer to cstablish effectively convergent results all computations were
performed for two mesh sizes, the first being the 9-interval solution described herc
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and the second an 18-interval scheme. In general, the differences between the
results for the two schemes were of the order of 0.4%. In view of the unavoidable
inaccuracies in the graphical representations which have been made of the computed
results, the usefulness of any improvement of the results through an extrapolation
technique is negated.
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APPENDIX B

PROCEDURE FOR DETERMINING THE STRESSES AND DISPLACEMENTS
FOR A RECTANGULAR SANDWICH PANEL

The governing small deflection theory differential equation for rectangular
sandwich panels subjected to normal pressure, uniform inplane loading, and a con-
stant temperature gradient through its thickness has been developed in Reference
22. This equation, derived from elemcntary equilibrium, compatibility, and stress-
strain relationships, is applicable to a sandwich panel having unequal shear stiff-
nesses but equal bending stiffnesses with respect to the two principal directions.
For the purpose of developing the design curves described in Chapter III, it was
deemed desirable to consider only rectangular sandwich plates having isotropic
cores and subjected to uniaxial inplane compression and uniform normal pressure.
In this case, the differential equation reduces to the form

(1 - p)Dg 6 6 6 6
— I:(lwqx)a‘g +2(1+'r;x)a—w—2+(3+77)a¥ +aw:’

Tz E 95 O el o

4 4
) W 120 W
2 2 4

4
- L [(2+(3-ILL )N )_0L4+ 4+@3-£)7
X

—_—

2 dx X ox oy  dy
2Dy 42, 2p
P 5 Y5t (B-1)
D7
5 ox s 'x
Nx
where 7 <D and Nx is the inplane loading in the x - direction (sce Figure III-1
g

in Chapter III), p is the uniform normal pressure.

Since, for the boundary conditions of present interest, an exact solution to
(B-1) cannot be obtained, a scries solution is cffected. The complementary func-
tion portion of the solution (wc) is taken to have the form

© ©
m X
wo= L XecostZ¥ 4§ Y cos mr (B-2)
b a
n=1 m=1

where X is a function of x only
and Y is a function of y only.
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Substitution of Equation (B-2) into (B-1) yields two differential equations.

1+ ) ) em e Loy 7 )| SK
nxDq x dx ’I')XDq b X < | dx4

I
(1- - )Dg abx ) [2(1‘#)[’5 ( n ] §

4 2 2

1 D 1
+[——( W2k (——“;’) (3+7 )‘+—(“”)(4+(3-#)77)+2Dq ¢ x
nxDq X My b X Dg dx2

(1- )D 6 2 4 .
_{ﬁi(%) +_n_x(n;r>}x =0 (B-3)

and,

6 2 4
(1- /u,)Ds d'y _ [ (1—,(.1.)Ds (in_7r> 347 ) + 2 J d'y
nD, W 7.0, a X Mx] dyt

. [2(1'#)% ( mw )4 (1+7 ) +—1—(m—v>2 (4+(3—#mx>sz—§

a X
n xDq Nx' a dy

— [(1—77#1)“)8 < m: )6(1 i x) i “;'k< m:>4 @+@-p)n ’) + 2%1< mWﬂ .

Py X s a
=0 (B-4)

Equations (B-3) and (b»4) ave ordinary linear differential equations and can
be readily solved to yield expressions for X and Y . Also, the particular integral
can be obtained, using procedures described in Reference 22, resulting in the
following complete expression for the deflection
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2 2
D ¢0}
s 1-¢ 1- ¢
- 1
w - 3 [Kl(._z_)cosh¢1nﬂx+K2 (_%)Cosh $, n7brx
M xq ( n(odd) $1 ¢
% ( 1- ¢ 32> h ¢ nTy
+ ——— Jcos nTx | cos
3 2 34— -5
P3 J
+ O§ K (¢ 2-1) cosh ¢ 7Y 4 K (¢ 2-1) cosh ¢ 2TV
1'%y i a 5 P5 T CORPsT
m(odd)
2 mmy mTmXx
+ K6(<I>6 -1) cosh<l>6 = ] cos "
2 2
2
o () (2 ) B5)
2DS 4 4
where ¢ O é 6 are the roots of the cubic auxiliary equations of Equations

(B-3) and (B-4) and Kl,———K6 are the six constants required to satisfy the boundary

conditions. It can occur for some combinations of dimensions etc. that the auxiliary
equations have complex roots. In such cases ¢, and ¢ 9 become complex conjugates

and ¢ 5 is purely imaginary. In principle the hyperbolic functions with complex

arguments should be transformed into the appropriate trigonometric and hyperbolic
functions, However, if the complete computation is carried out using a complex
mode, as is possible in FORTRAN-coded programs, it is not necessary to perform
this transformation and the present algebraic form can be retained without loss of
generality.

For the special case of 7 . 0 (no midplane force), equal roots occur in the
two auxiliary equations, so that
¢1=¢>2=1 and¢4=¢5=1

and the deflection function has the slightly different form
W

n’Tx nx nwx nmwx nmTy
w= X K 1 —
2 [ o1 p - Sih KO1 cosh i K03 cosh 4)3 o J cos -
n(odd)
© m7v y m7 X T mmTy [ CosS m7TX
7 . mmy =2
+2 { K04 - sinh T 1(05 cosh - Kos cosh ¢ ¢ a3 } 5
m (Od(nl' 4 4
p 4 a 4 b
RO RTIAC TS ] (B-6)
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The solutions presented in Chapter III can be divided into the following three
classes of problems:

(1) Simple support on all edges with a uniform normal pressure and a constant
temperature difference between thefaces. (7 X 0.)

(2) As in case (1) but with the addition of uniaxial uniformly distributed
inplane compression. (nx #0).

(3) Simple support on two opposite edges and fixed support on the other two
edges and with same loading as case (1).

The boundary conditions pertinent to these cases are as follows:
For Cases (1) and (2)

at x == tw=0,M =0,V =0
X y

Nlc‘ m‘m

tw=0,M =0,V_=0
y X

]
H

at y
where VX and Vy are vertical shear stress resultants in the core

For Case (3)

at x=ﬂ:£:w=0,M=O,M =0
2 X Xy
at -:l<£'w-0,B=OM =0
y== 9 = Y y ’ Xy =
where Mxy is the twisting moment and B y is the rotation of the vertical

fibers of the core. Note that although the classic solution for an isotropic
plate requires only two boundary conditions, three are required for a sandwich

panel.

Substitution of the above conditions into the appropriate expressions for
moment and shear leads to simultaneous equations from which the constants ( 1

or KOl—--KOG) are extracted. The deflections and moments are then obtained by

back substitution into the pertinent expressions.

In cases (1) and (2) the series involved are orthogonal while in case (3) they
are non-orthogonal, Thus, in cases (1) and (2), the individual constants can be
determined directly for any given term of the series, defined by m or n, indepen-
dently of any other term of the series and the problem is reduced to the simple solu-
tion of two groups of three simultaneous equations in Ky Ko, K3 and Ky, Kg, Kg.

In the computer program employed for solutions to case (1) and (2) problems, a con-
vergence criterion is used to select the number of terms in the series.
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In case (3) the values of K;---Kg for any term of the series depend on all
other terms. For a series of n terms, 6n simultaneous equations must be solved.
Here, since the computational time will be quite long for a series with many terms,
both convergence and computational efficiency considerations have been used to
govern the number of terms selected.
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APPENDIX C

SANDWICH CYLINDER INSTABILITY UNDER CIRCUMFERENTIALLY
VARYING AXIAL STRESS

This problem concerns the prediction of the elastic instability of a circular
cylinder of sandwich construction subjected to axial stresses that vary in the cir-
cumferential direction. The geometric and load conditions for this problem have
been detailed in Chapter IV (see Figure IV-1).

The solution approach is essentially the same as that employed for isotropic
cylinder analysis in Reference 9. There, Donnell's partial differential equation has
reduced to an ordinary differential equation by assuming the buckled shape to be
sinusoidal in the axial direction. Then, the ordinary differential equation was
reduced to a set of algebraic equations through use of second-order finite differ-
ences and matrix iteration was applied in determination of the eigenvalues and
eigenvectors.

Now, Donnell's equation, modified to apply to a sandwich cylinder, becomes:

'(see Reference 13).

D 2 4 4 2
D V8w+2tr2(1--ﬁs—2\7>(an+V o U_) =0 (C-1)
s qr 2

X

0x4 ox

where x in this case is a non-dimensionalized axial coordinate (the axial coordinate
divided by the radius).

The displacement w is assumed to be of the form
w =W sin )} x (C-2)

where W is a function of the circumferential coordinate (y) only, and X is a
function of the wavelength in the axial direction.

Substituting Equation (C-2) into (C-1) and introducing a nondimensionalization
of the stress distribution similar to that used for the flat panel in Chapter II and
Appendix A, the differential equation reduces to
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6 4

6
)W—(4DS>\ +2tr2
c c

E )\
D

[(Ds )\8+2tr2E)\4+2tr2

v 2, VI WVIII :[

+6p 2 twV —ap 22wl ip
S S S

2
2 [ 6 A2 4 3\ Il
- 2tr o . LA (1+—DC—)(PSW)— A2+ ) )(PSW)

(¢

2 2
A v v
5 BE (1+3D A W) ~ Ix) (PW) I] =0 (C-3)

C c

Dr2
q

Ds

where primes indicate derivatives with respect to y only and DC =

The conditions examined are limited to stress variations which are symmet-
ric about the vertical (z) axis. In order to write Equation C-3 in terms of finite
differences, the circumference of the cylinder is divided into 2n spacings, each of
length rTr/n, as shown in Figure IV-1. Note that elements 0 and n lie on the axis of

symmetry, With use of second order finite differences, C-2 reduces to
[' (Whes * Wiees ) A0 (Wiea s Wira) A2 = (Wies " Wias) A3
F W g Wip) Ay~ (W g+ W) A+ W, AG:I
- I [ (Preaia® Praa¥ies ) B (P res™is * PragVies ) B

W W -
(P22 * Pre2Viez ) Bs ~(ProiWict *PieenVier ) By

AW BsJ =0 (C-4)
where
A4 _ 3 13A
M Ay= AU
A, = /\2(23/\2+12/\+1)
2
3 2 1 T°KA
A =A@26A S+116A 2ason 410,87 KA
> ~ 3 3 D,
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2 4 . 2
2
A6=(154/\4+150/\3+56/\ +10 /\+1+’;K’\(5/\+2)+UK_’\)
n Dy n4
3 2
KA KA D A T 2
B, = B, = 6N +1+ L)
1 2DC 2 DC 3 n
2
AD.T
B =K—A(26 A+ 1gh vty —2 (12A +1))
3 p 2 32
c n
2
KA 2 AD. T
B,=——(88A +39A+g+ ——— (A +16))
D¢ 3n
2
AD T
K 3 2 2 C 2
. : (28 A A
B, D, (5. A"+56 A4 15A +2 o2 (28 + 15A + 3))
2
n
A =—
T2 \2
K 2 (1-p9r?
(h +t)2
Tcr
==

Equation (C-4) can be written for each pivotal point, resulting in (n + 1)
simultaneous equations in the W's for one-half of the cylinder (as noted above,
symmetry permits the analysis to proceed on the basis of one-half of the cylinder).
For points affected by the boundaries at the top and bottom of the cylinder, the
following boundary conditions are applicable:

W =W  andW @< 5)

=W
-p P n-p n+p

As in Appendix A, the resulting algebraic equations can be cast in the matrix

(18] + n[3] {w} -

The matrices [A:I and [ ] are presented in Figures C-1 and C-2, respectively.
The dominant eigenvalue, i corresponding to the lowest critical stress, can be

extracted from Equation C-5 in the manner outlined in Appendix A.
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APPENDIX D

THERMAL STRESSES AND BENDING MOMENTS IN A HEATED
SANDWICH CYLINDER SUPPORTED BY RIGID BULKHEADS

A sandwich cylinder of cross-sectional properties identical to those assigned
to the sandwich cylinder of Appendix C, but of finite length 2c, is supported at each
end by a rigid bulkhead. The cylinder may be continuous over several bays, so that
each bay is effectively built-in at the rigid bulkheads due to symmetry, or one bay
alone may be considered with simply supported ends. The cylinder is uniformly
heated so that a temperature change from the stress-free state (A T) is sustained,
while the bulkheads are unheated.

The subject problem is similar to that of a beam on an elastic foundation.
Using this concept, the basic differential equation for the radial deflection (w) is

4 2
dw _2E dw  2E o . qa AT) =0 (D-1)

2 2 2
dd  r D, dx r2D

where @ is the coefficient of thermal expansion. A general solution for this
equation is

w = C1 cosh m1 —E—
r2D
q

where m, and m_, the roots of the auxiliary equation, are given (in nondimensional
form) by

mlz = [1 +4/1 -—-ZH— :l and, mz2 = [1 - Vl--;—:l (D-3)

1/2 Et 1/2
X + C2 cosh m2<—-> X - ralAT (D-2)

r2D
q

d d
with B, = B £t
I 2 qu Dch

The roots m, and my may be real (Hq > 2) or complex (Hq < 2). In the

latter case, the hyperbolic functions of Equation (D-2) should be modified as follows:

cosh (a +ib)=cosh a cosh b+isinhasin b

but, as in Appendix B, provided all computations are carried out in a complex mode,
it is not necessary to transform the hyperbolic functions.
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As noted above, two support conditions - simple and fixed support--are of
present interest, Consider first the simple support condition, where the boundary
conditions are

2
at x=+c¢, w=0 and sz— S [u-ﬁ(wdrra AT)J =0

2 2
dx I Dq

Using these conditions, the constants Cq and Cy are determined and the deflected
form becomes

ra AT 9 cosh mle 9 cosh m2Hx 9 5
W= - [(m,-2) ————= - m,-2) ———="-(m_"-m_“)
) 2 2 1

(mzz_mlz cosh mlH1 1 cosh m2H1 .
(D-4)
1
where H = It /2—)1 and H, = Et E ¢ D-4
x \D T 1~ \D T (D-4a)
q q
The formula for hoop stress is
o ——E[w+raAT:l D-5
¢ =71 (D-5)
Thus, the hoop strcss at the center (at x = 0) is given by
2 2.
Ea AT -2 m, %2
U¢ ST 9 coshm_ H,  coshm H (i~sz)
¢ (m_ “-m_%) 171 21
1 2
Also, the expression for longitudinal bending moment is
2
M =-p 9% _ %E Ww+raAT) ' (D-6)
x S dx? 2D
q
Hence, the maximum bending moment in the cylinder (at the center, x = 0) is
(11112—2)(11122—2) 1 1
Mx - Hd D,raAT [cosll m_H.  coshm_ll ] (D-6a)
5 a (m;2-my2) 17 SO My

With built-in cnds, the boundary conditions arc
dw _Qy

tx=42c, W= and
at x (¢ ndx Dq

where Q, is the transverse shear force and is given by

3
dw 2tE dw
S = -— - = = D-
Qx Ds l:dx3 1'2Dq dx :l (B-7)
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so that the second boundary condition becomes
3
d Ds ¢%w
LWa (D-8)
Use of the above bhoundary conditions with Equation (D-2) and its derivatives

yields the constants C; and C,, for built-in support conditions and leads to the
following expression for the radial displacement

2 249 M1
1-H ,(2-m_7)| sinh m_H coshm_ 1i_ = [1-H, (2-m, )| — sinh m_H cosh m_H
d 2 271 1 'x d
w-—-ruAT[[ ] x [ 1 ]mz 11 27°x -1 (D-g)

2] 2] ml
- - | il - [1- -
[1 Hd(Z m, )| sinh mt cosh mIHl [l ud(z m, ) Ty sinh ml“l cosh m2“l

The hoop stress at the center is now

2 27 ™1 sinhm_ H
[1-Hd(z-m2 )] sinh m,H, - [1-ud(2-m1 )] y 11 J (D-10)
1 cosh m2HI

o =-EuAT{ 5
g . ~ N _m 2y Ml
950 [1 Hd(z m, )] sinh mz}i cosh mlH [1 Hd(Z m, )] w5 sinh mlll

1 1

while the bending moment at the center is given by

M, =-HD raAT

2 2 2 2, M
[1-110‘(2-m2 )] (m, “-2) sinh m H, - [1-nd(z-m1 )] (m, ~2) - sinh m 1
Xe dq

| o

21m
- = 2 o - - 018
[1 H l(2 m2 )] sinh mZHI cosh mlH] [l H (2 ml )] 9 sinh mllll cosh mZ”I

Of additional interest is the bending moment at the built-in ends

2 2 2 2, M
[I-Iid(Z-m2 )] (m, "=2) slnh m 1l coshm M, - [l-lld(z-m1 )] (m,"-2) 75 sinh m 1l cosh m,ll, J

[

Mx -Ilqu ruAT ’:
2

y 2 e _ 21 ml
[1 nd(z m, )] sInh m_ii, cosh mlll [l Ild(2 m, )].n_15 sinh ml”l coshm “l

21 I

(D-12)
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APPENDIX E
BUCKLING OF A SANDWICH CYLINDER UNDER THERMALLY
INDUCED HOOP STRESS

1. GOVERNING EQUATIONS

Appendix D treats the problem of determining the hoop stresses in a uniformly
heated sandwich cylinder supported at either end by rigid unheated bulkheads. This
Appendix develops a method for determining the cylinder temperature change, ATCI.,
for which the cylinder will buckle in consequence of the induced hoop thermal
stresses. Thus, it is assumed that the hoop thermal stresses will have already been
determined by use of the technique of Appendix D.

For the present case, Donnell's equation, modified to apply to sandwich con-
struction, takes the form (Reference 13),

D 4 2
D Uiwsat[1--Sv? (B Y,ytse ¥ |- (E-1)
s D 2 . 4 vy .2
q r- dx oy

The general solution for hoop stress, Ty, as derived in Appendix D, is of the
form

o = Acoshm H + Bcoshm
y X

) H (E-2)

2
As described in Chapter VI, three separate cases must be considered:

(a) Fixed support condition. In this case the cylinder consists only of one bay
fully fixed against rotation at each rigid bulkhead.

(b) Simple support condition - one bay. Again the cylinder consists only of
one bay but the ends are no longer restrained against rotation at the

bulkheads.

(c) Simple support condition - many bays. The cylinder is taken to be con-
tinuous over many bays as in a fuselage. The bulkheads provide no
restraint against rotation but restrain completely all radial displacement.

In Chapter VI it was demonstrated that case (c) is derived from a combination
of fixed support thermal stresses and a simply supported buckling mode. Thus no
theoretical treatment of this case is necessary in this Appendix and only cases (a)
and (b) are discussed here.
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2. FIXED SUPPORT CONDITION

To analyze for fixed support conditions, the origin of coordinates is first
shifted from the center of the cylinder to the left bulkhead (see sketch below). The
hoop stress equation then takes the form

o y =Ea AT [ A cosh my (Hx-H ) + B cosh mZ(Hx'Hl )] (E-2a)
Also, since the hyperbolic functions are not convenient for use in Equation (E-1), a

transformation to an infinite cosine series is accomplished with Fourier analysis
techniques, resulting in -

9 @ pTX
Oy =ECAT Y _°p cos o (E-3)
1
p=0 +%p

where SOp is the Kronecker delta / ® ij =0, 1 Fi
S .. -

ij = 1, i=j
2 AmlHl sin mlH1 2B n12Hl sinh m2Hl
and Cp = 5 + 5 (E-4)
pv) 2 (Qﬂ;) 2
(—2— + (mlHl ) 2 + (m2H1 )
for p even, and
C =0
P . (E-4a)

for p odd.

y )

z (W) \
} 2 |
I o1

To achicve a solution for Equation (E-1) with use of Equation (E-3), Galerkin's

method is employed. Thus, a deflection function which satisfies both the static and
kincmatic boundary conditions is selected. This function, which was employed by

Anderson in Reference 28 is
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k
= i Tr_y Z - W—x.. lx_ -
w = sin o am [cos (m-1) 5o cos(m+1) %0 } (E-5)

where \ = lrn—r-is the half wavelength of the buckled shape in the circumferential

direction and the coefficients ap, range from m=1 through m=k (the function for w is,
of course,an infinite series with k = @ but is truncated at a finite value of k for
numerical analysis). The unknown coefficients ay, are determined from the

condition

A2
f f w . Q(w)dxdy = 0 (E-6)
) 0

where Q (w) is the differential equation (E-1) with cry from Equation (E-3).

After integration of Equation (E-6) and rearrangement of terms one obtains

2 [Um(l + Slm) + Um+2

] ) am-2Um a- 8 1m)(1- 82m)_ 2 Uer2

k
- —~ - - - - 4

+TY 2({Cp i 5=2C0 1 *Co ivo” Crsice " 2 Ot ~ Convive) 2
i=1 1T

H_d [(1+ Bz)(m-i-Z)z + 2 (i+1)(m-i-2) + (i+1)2] C

2

H

+ m-i-2

-2 [(1 + BYHm-1? + 2igm-i) + (12 + 1) ] ém_i (E-7)

9 2
- [(1+B2)(m-i+2) + 2(i-1)(m-i+2) + (i-1) ] Cm-is2

(@]]

- r(1 + Bz)(m+i-2)2 - 2(i-1)(m+i-2) + (i-l)z] m+i-2

w2 [+ BHm)? - 2ime1) + 2+ 1) ] C....

- [a+ BYmriva)? - 26+1) (m+ir2) + (i+1)2] Coriva| =0
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2 32H 4 2
here U = -1 i 12 + .
were Uy <5 [0 ] Ty [t 2 [

—  Ck 9 2

- c ctC
Ck = C ’ B =—)\—‘ and M= Ocr
0 D,

Equation (E-7) can now be written for m = 1, 2, 3, --- k, which yields k
simultaneous equations. The condition of a vanishing determinant leads to the criti-
cal value of the buckling stress parameter Il . It is, however, more convenient as
in Appendix A, to present the problem in matrix form and apply an iterative tech-
nique for the determination of I for a number of values of the wavelength para-
meter 8. When the simultaneous equations are written in matrix form, one obtains

o] {e}+ 0 [s]{s) -
6 -] (2] { ) =

It is found that the matrix [U ] -1 [ > ] has a checkerboard pattern, i.e.,
alternate terms are zero. This matrix can be rearranged to form two decoupled
systems, corresponding to symmetric and antisymmetric failure modes, which can
be treated separately. The symmetric mode leads, in all cases, to the lower criti-
cal stress. From the eigen value IT of the system the value of Co,,. = C,Ea A Ter
can be computed leading to the critical temperature rise ATcr c

or

Unfortunately, this approach demonstrated such poor convergence that it was
not possible to determine the critical temperature even with m = 30. As noted in
Chapter VI, however, a more critical mode of buckling than the present case can be
defined (Case (c)) when the intent is to analyze a long cylinder supported over many

rings.
3. SIMPLY SUPPORTED EDGES - ONE BAY

As in the case of built-in edges the expression for the hoop stress in the
cylinder is transformed into the Fourier cosine series (Eq. E-3), where the coef-
ficients Cp are given by Eq. E-4.

The analysis follows that of Hoff (Reference 14), suitably modified to include
shear deformation terms. Hence, the displacement function is taken to have the

form

m7 X
E-9
\ (E-9)

W = ¢coSn a CcoS
y 2. -
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Substitution of Equations (E-3) and (E-9) into (E-1) yields an expression in-
volving double series. These series can be manipulated, as in Reference 14, to
generate a set of linear simultaneous equations (see Equations 28 of Reference 14).

The geueral form of one such equation is the counterpart of Equation (E-T7) of the
fixed support case and the matrix form of these equations has the same appearance
as Equation (E-8). The expression for U, given by Hoff, however, must now include
the shear deformation terms, i.e.

. [(.nl_;\r.>2+112] * +4(1-/12)<-£—>2[ 1+ iiszq { ( _r%7_r_>2 +n2}] <-m_>\71>4(E-10)
m
o h(2) [ {(3F) o) T

In the present case the matrix associated with this term ( [U] ) is a diagonal
matrix and is therefore easily inverted. Using the matrix iterative techniques of
Appendix A the eigenvalues of the system for a range of values of the wavelength
parameter are computed and the minimum determined using a standard curve
fitting procedure.

The eigenvalue thus determined, R in Hoff's notation, corresponds to the
critical thermal strain @ A Tg,..
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APPENDIX F

SANDWICH CYLINDER STRESSES DUE TO INTERNAL AND EXTERNAL
PRESSURE AND RADIAL TEMPERATURE GRADIENTS

The cylinder treated in this section is of the identical cross-section as those
examined in Appendixes C, D, and E and is infinitely long. Now, however, a dis-
tinction must be made between the radii of the inner and outer skins. The inner
radius is designated as rj and the outer radius as ry. The inner and outer skins
are at constant temperatures T; and T, respectively (AT = Ty-T;), and both
internal and external pressures may be present. Also, the core is now assumed
to have a modulus of elasticity in the radial direction (Ey) and zero stiffness in the
circumferential and axial directions.

In this approach to the development of relationships for the stresses in the
faces and core, each cylindrical component (the inner and outer faces and the core)
is examined separately and finally combined using conditions of compatibility at the
interfaces. Axial stresses are transmitted from one cylinder to the next only at
the ends of the cylinders; such "end effect'" strcss systems are not considered in
this development.

Sketched below is a representation of the forces acting on the skins and on
the core. The unknown interface stress between the inner skin and the core is
designated asq;. At any radius r, the radial stress within the core must be

q.r,
ii
q= — (F-1)
rj qi
and it follows that qj = Qj -~ = Y (F-1a)
o}
r
where R = -.—0—, (F-2)
Ty
9
P, oxo
0’9.‘\ /
i
\U
o 8
Xj Pi [
Ao
Inner Face Outer Face
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while the radial strain due to this stress is

9%

(¢ Err

Pt

€ (F-3)

By integraticn from rj to r,, one obtains the radial growth (i.e., the change in
radial displacement between the inner and outer faces) due to this strain as follows:

To . .1
A wg =_/ qiry _ 3 In(R) (F-4)

q
r; Err Er

The radial growth due to thermal strains is simply
To+ Ty
2

A We =0 ( ) (ro-Tj) (F-4a)

Considering now the total radial growth of the core (w¢) as being composed
of both the growth due to thermal expansion and A wcq, one obtains

LR
b we [ LT T + 5 In®] (F-5)

Radial displacement of the inner cylinder (wj) is given by

‘qi + pi) I‘i Ux.
= a . - A1 o
Wi = I [ T + — I E ] (F-7)

where axi is the axial stress in the inner cylinder, while the strain in the axial

direction is

a Xi (q1+pl)r1 ]

exiz [a Ti*? L (F-1)

Similarly, for the outer cylinder, the radial displacemcnt and axial strain are
o.

Xo (g +Po) ro]
WO = ro [Cl TO- H ‘E_’ = -E_t (F"S)
and o, )
e = om0 u loRalo] (¥-9)
Xo E Et

where Crxo the the axial stress on the outer cylindcr.
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From equilibrium, it is found that
o

o = _Uxir_i s (F-10)
Xo r, R
and, from compatibility
exi = exo (F-11)
w,+ Awg = woo ' : (F-12)

Use of conditions (F-1) and (F-10) to (F-12) together with Equations (F-3) and
(F-5) to (F-9) leads to the following two simultaneous equations in o X{ and 9

(4R) O, 2ur R q, TR
—_— = —— = aRAT+ (o.+ p R) (F-13)
E Et E ' °
2p o
rooy T, (4R+K)q, r, (F-14)
- 1 1 _a i 2
* = (+R)AT ——— (p. + p R”)
E Et E ' °
Thus r 9 v
Ea AT R ((L+R)(1+ # )+ K) — # R(1-R-K) Pi5i + nR%(1-R+K) Poli
= t t
Gxi 2
(1+R)(1+R+K) - 4 » R (F-15)
2 2 2 2
Ea ATt ((1+R)” +4p R) - p;(1+R-2 p "R) - poR” (1+R-2u7)
qi = 2rj 5
(1+R)(1+R+K) - 4 "R (F-16)
Et
where K= T In R

Using Equations (F-15) and (F-16), the equations for hoop and axial stress of
Chapter VII are obtained by back substitution into the appropriate equations.
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